What can be learned from the 3 HEcoPerMed case studies?

Balázs Nagy, PhD, Habil
balazs.nagy@syreon.eu

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No 824997.
HECOPERMED

• Healthcare- and pharma-economics in support of the International Consortium for Personalised Medicine
• To support research and implementation of personalised medicine in Europe and beyond

Produced:
• Guidance for the harmonisation and improvement of economic evaluations of personalised medicine
• Position paper: Lessons learnt and potential opportunities ahead
• 6 scientific papers
• Special issue in ‘Personalized Medicine’ : 7 papers (coming soon)

• Website: https://hecopermed.eu/
ToxNav: A genetic test that identifies breast cancer patients at risk of adverse effects due to fluorpyrimidine based chemotherapy (5-FU and capecitabine) caused by genetic deficiency in the function of the dihydropyrimidine dehydrogenase (DPD).

Genetic testing to initiate tumour agnostic treatment for solid tumours with NTRK fusions (Larotrectinib and Entrectinib).

Genetic testing of monogenic diabetes, caused by mutations in the GCK, HNF1A or HNF4A genes (MODY 1-3).
CASE OF NTRK

• Histology-independent (tumour-agnostic) therapy = prescribed based on genetic markers of tumour, regardless of tissue of origin

• Entrectinib
 • Recently approved by FDA and EMA
 • Inhibitor of TRK proteins, prescribed for patients with locally advanced or metastatic solid tumours and oncogenic neurotrophic tyrosine receptor kinase (NTRK) gene fusions

• Around 0.3-1% of locally advanced or metastatic solid tumours contain these NTRK-fusions

• NTRK-fusion positive patients receive entrectinib - testing is not standard practice

• Is it cost effective to test for NTRK positive patients?
NTRK – DATA CHALLENGES

- Efficacy is determined with single-arm basket trials
 - Patients with different tumour locations and possibly heterogeneous treatment effects
 - Creates challenges for the assessment of the relative treatment effectiveness and cost-effectiveness as required by reimbursement authorities
- Lack of a comparator arm
 - Raises the need for indirect comparisons to historical control data.
 - The control data need to be adjusted to account for the prognostic value of NTRK-fusions that is largely unknown.
- Small study size, n=58

- Take away: Data problems can occur often when targeting a small subgroup of patients with little history/information about their potential to improve
NTRK – VARIOUS STRATEGIES FOR PERSONALIZATION

• Test strategies:
 • RNA-NGS test for all tumour types
 • IHC test for all tumour types
 • IHC test followed by RNA-NGS in patients with a positive IHC test result for all tumour types
 • Stratified test strategies depending on the NTRK fusion prevalence and TRK wild-type protein expression of the tumour types

• Take-away: **Patient pathways are not easy to set up!**
IHC then NGS is the best strategy… but not cost-effective vs. SoC

Take away: **Combination of lower prevalence and expensive innovative therapy**
SUB-GROUP ANALYSIS: NTRK+ PATIENTS ONLY, WITHOUT TESTING
Positive NMB for the Netherlands, negative NMB for England and Hungary

Take away: reduction of the stratification burden can be key
NTRK IV.- BUDGETARY IMPACT CAN DRAMATICALLY CHANGE BY JURISDICTIONS

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Five-year incremental budget impact (int€)</th>
<th>Percentage test costs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UK</td>
<td>HU</td>
</tr>
<tr>
<td>IHC then NGS</td>
<td>180,289,572</td>
<td>39,803,379</td>
</tr>
<tr>
<td>Stratified</td>
<td>187,583,081</td>
<td>45,766,968</td>
</tr>
<tr>
<td>NGS for all</td>
<td>284,637,684</td>
<td>122,760,610</td>
</tr>
<tr>
<td>IHC for all</td>
<td>1,228,043,140</td>
<td>359,777,624</td>
</tr>
</tbody>
</table>

Proportion of total expenditure

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Percentage of total health expenditure</th>
<th>Percentage of total cancer care expenditures</th>
</tr>
</thead>
<tbody>
<tr>
<td>IHC then NGS</td>
<td>0.02</td>
<td>0.11</td>
</tr>
<tr>
<td>Stratified</td>
<td>0.02</td>
<td>0.13</td>
</tr>
<tr>
<td>NGS for all</td>
<td>0.03</td>
<td>0.35</td>
</tr>
<tr>
<td>IHC for all</td>
<td>0.13</td>
<td>1.03</td>
</tr>
</tbody>
</table>

Take away: The burden of PM can dramatically change by jurisdictions
THE CASE OF TOXNAV

- Fluoropyrimidine-based chemotherapy drugs, including capecitabine and 5-fluorouracil (5FU)
 - to treat several solid tumour types
 - cause severe adverse drug reactions (ADR) due to genetic mutations
 - 10-15% of patients poorly metabolize chemotherapy and have an increased risk of severe toxicity
 - germline mutations in DPYD gene causing a DPD enzyme deficiency

- Extended DPYD genotyping with ToxNav test before chemotherapy help identify poor metabolisers prior to chemotherapy and allow for dose adjustment, potentially avoiding severe toxicities

- Is it cost effective to use ToxNav test for breast cancer patients before capecitabine and 5-fluorouracil chemotherapy?
<table>
<thead>
<tr>
<th>Country</th>
<th>Strategy</th>
<th>Costs</th>
<th>QALYs</th>
<th>Incremental costs</th>
<th>Incremental QALYs</th>
<th>ICER</th>
</tr>
</thead>
<tbody>
<tr>
<td>United Kingdom</td>
<td>ToxNav© strategy</td>
<td>€327.1 mln</td>
<td>22,670.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Standard of Care</td>
<td>€714.4 mln</td>
<td>21,740.0</td>
<td>€-387.3 mln</td>
<td>930.8</td>
<td>Dominant</td>
</tr>
</tbody>
</table>

MAIN ANALYSIS RESULTS

PER 10,000 SIMULATED WOMEN FOR LIFETIME HORIZON, INT €, COST YEAR 2020/2021, COUNTRIES UK, THE NETHERLANDS, HUNGARY

<table>
<thead>
<tr>
<th>Country</th>
<th>Strategy</th>
<th>Costs</th>
<th>QALYs</th>
<th>Incremental costs</th>
<th>Incremental QALYs</th>
<th>ICER</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Netherlands</td>
<td>ToxNav© strategy</td>
<td>€108.8 mln</td>
<td>27,121.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Standard of Care</td>
<td>€110.0 mln</td>
<td>26,180.8</td>
<td>€-0.8 mln</td>
<td>940.5</td>
<td>Dominant</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country</th>
<th>Strategy</th>
<th>Costs</th>
<th>QALYs</th>
<th>Incremental costs</th>
<th>Incremental QALYs</th>
<th>ICER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hungary</td>
<td>ToxNav© strategy</td>
<td>€62.3 mln</td>
<td>22,725.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Standard of Care</td>
<td>€61.3 mln</td>
<td>21,792.5</td>
<td>€0.9 mln</td>
<td>933.3</td>
<td>€987.1</td>
</tr>
</tbody>
</table>
TOXNAV – TAKE AWAY

• Personalization of high prevalence health problem treated with existing (cheap) care has great potential to be cost effective
• In the absence of trial data effectiveness data can be obtained from RWD, especially when new genetic tests are developed for long existing treatments with proven benefit.
CASE OF MODY

- Maturity Onset Diabetes of the Young is a form of monogenic diabetes, caused by 13 mutations
- Accounts for at least 1%-5% of all diabetes cases, age of onset typically <35 years
- Most of MODY cases are misdiagnosed as type 1 or type 2 diabetes
- With proper diagnosis no insuline treatment is required
 - Dietary intervention alone is usually enough for GCK-MODY patients
 - HNF1A-MODY and HNF4A-MODY patients are able to maintain optimal glycaemic control with sulphonylurea
- Diagnosis of MODY subtype drives appropriate treatment and prognosis

Is it cost-effective to diagnose MODY patients by genetic testing?
SCREENING FOR MODY PATIENTS - SCENARIO 1

1. Diabetes patient max. 35 year old on insulin
2. MODY calculator (survey)
3. MODY genetic test

Positive result:
- True positive test: Detected MODY
- False positive test: No MODY

Negative result:
- True negative test: No MODY
- False negative test: Undetected MODY

MODY Probability Calculator
SCREENING FOR MODY PATIENTS - SCENARIO 2

1. Diabetes patient max. 35 year old on insulin

2. MODY calculator (survey)
 - negative result
 - true negative test: No MODY
 - false negative test: Undetected MODY

3. MODY genetic test
 - positive result
 - true positive test: Detected MODY
 - false positive test: No MODY
 - negative result
 - true negative test: No MODY
 - false negative test: Undetected MODY

4. Autoantibody test
 - positive result
 - true positive test: Detected MODY
 - false positive test: No MODY
 - negative result
 - true negative test: No MODY
 - false negative test: Undetected MODY
Screening without autoantibody testing - Hungary

Screening with autoantibody testing - Hungary

Willingness to pay threshold of Hungary

Screening without autoantibody testing - Netherlands

Screening with autoantibody testing - Netherlands

Willingness to pay threshold of the Netherlands

Screening without autoantibody testing - United Kingdom

Screening with autoantibody testing - United Kingdom

Willingness to pay threshold of the United Kingdom
ACKNOWLEDGEMENT

AUSTRIAN INSTITUTE OF TECHNOLOGY (AIT)
Manuela Kienegger, Doris Schartinger, Susanne Giesecke

DEUTSCHES ZENTRUM FUER LUFT - UND RAUMFAHRT (DLR)
Wolfgang Ballensiefen, Maren Walgenbach

INSTITUTE FOR MEDICAL TECHNOLOGY ASSESSMENT (iMTA) and
ERASMUS UNIVERSITY ROTTERDAM (EUR):
Simone Huygens, Maureen Rutten-van Molken, Heleen Vellekoop, Matthejs Versteegh

SYREON RESEARCH INSTITUTE (SRI):
Zoltán Kaló, Balázs Nagy, László Szilberhorn, Tamás Zelei

UNIVERSITY OF OXFORD (OXF):
Rositsa Koleva-Kolarova, Apostolos Tsiachristas, Sarah Wordsworth